Rabu, 10 Juli 2013

Pengantar Quantum Computation

Pendahuluan 
            Sebelum mengenal lebih jauh tentang Quantum Computation atau komputasi kuantum, saya akan menjelaskan definisinya terlebih dahulu.
Komputasi kuantum adalah bidang studi difokuskan pada teknologi komputer berkembang berdasarkan prinsip-prinsip teori kuantum , yang menjelaskan sifat dan perilaku energi dan materi pada kuantum (atom dan subatom) tingkat. Pengembangan komputer kuantum , jika praktis, akan menandai lompatan maju dalam kemampuan komputasi jauh lebih besar daripada yang dari sempoa ke modern superkomputer , dengan keuntungan kinerja di alam miliar kali lipat dan seterusnya.
Komputer kuantum, mengikuti hukum fisika kuantum, akan memperoleh kekuatan pengolahan yang besar melalui kemampuan untuk berada di beberapa negara, dan untuk melakukan tugas-tugas menggunakan semua kemungkinan permutasi secara bersamaa. Kini pusat penelitian di komputasi kuantum termasuk MIT, IBM, Oxford University, dan Los Alamos National Laboratory.

Entanglement
Entanglement merupakan keadaan dimana dua atom yang berbeda berhubungan sedemikian hingga satu atom mewarisi sifat atom pasangannya. “Entanglement adalah esensi komputasi kuantum karena ini adalah jalinan kualitas yang berhubungan dengan lebih banyak informasi dalam bit kuantum dibanding dengan bit komputing klasik,” demikian Andrew Berkley, salah satu peneliti.
Para ahli fisika dari University of Maryland telah satu langkah lebih dekat ke komputer kuantum dengan mendemonstrasikan eksistensi entanglement antara dua gurdi kuantum, masing-masing diciptakan dengan tipe sirkuit padat yang dikenal sebagai persimpangan Josephson. Temuan terbaru ini mendekatkan jalan menuju komputer kuantum dan mengindikasikan bahwa persimpangan Josephson pada akhirnya dapat digunakan untuk membangun komputer supercanggih.

Pengoperasian Data Qubit
Proses komputasi dilakukan pada partikel ukuran nano yang memiliki sifat mekanika quantum, maka satuan unit informasi pada Komputer Quantum disebut quantum bit, atau qubit. Berbeda dengan bit biasa, nilai sebuah qubit bisa 0, 1, atau superposisi dari keduanya. State dimana qubit diukur adalah sebagai vektor atau bilangan kompleks. Sesuai tradisi dengan quantum states lain, digunakan notasi bra-ket untuk merepresentasikannya.
Pure qubit state adalah superposisi liner dari kedua state tersebut. Lebih jelasnya, sebuah pure qubit state dapat direpresentasikan oleh kombinasi linear dari state|0> dan state |1> : Dengan α dan β adalah amplitudo probabilitas yan dapat berupa angka kompleks. State space dari sebuah qubit secara geometri dapat direpresentasikan Bloch sphere
Bloch sphere adalah ruang 2 dimensi yang merupakan geometri untuk permukaan bola. Dibandingkan bit konvensional yang hanya dapat beradai di salah satu kutub, Qubit dapat berada dimana saja dalam permukaan bola. Untuk penerapan fisiknya, semua sistem 2 level, selama ukurannya cukup kecil untuk hukum mekanika quantum berlaku. Berbagai jenis implementasi fisik telah dikemukakan, contohnya antara lain: polarisasi cahaya, spin elektron, muatan listrik, dll.
Superposisi quantum adalah inti perbedaan antara qubit dengan bit biasa. Dalam keadaan superposisi, sebuah qubit akan bernilai |0> dan |1> pada saat bersamaan. Menurut interpretasi Copenhagen, bila dilakukan pengukuran terhadap qubit, maka hanya akan muncul satu state saja. State lainnya “kolaps” dalam arti hancur dan tidak mungkin diambil kembali.
Pemanfaatan sifat superposisi qubit ini adalah Paralellisme Quantum. Paralelisme Quantum muncul dari kemampuan quantum register untuk menyimpan superposisi dari base state. Maka setiap operasi pada register berjalan pada semua kemungkinan dari superposisi secara simultan. Karena jumlah state yang mungkin adalah 2n, dengn n adalah jumlah qubit pada quantum register, kita dapat melakukan pada komputer quantum satu kali operasi yang membutuh kan waktu eksponensial pada komputer konvensional. Kelemahan dari metode ini adalah, semakin besar base state yang bersuperposisi, semakin kecil kemungkinan hasil pengukuran dari nilai hasil pengukuran tersebut benar. Kelemahan ini membuat pararellisme quantum tidak berguna bila operasi dilakukan pada nilai yang spesifik. Namun kelemahan ini tidak begitu berpengaruh pada fungsi yang memperhitungkan nilai dari semua input, bukan hanya satu. Sebagaimana ditunjukkan pada Algoritma Shor.

Quantum Gate
Dalam komputasi kuantum dan khusus kuantum sirkuit model komputasi, gerbang kuantum (atau Gerbang logika kuantum) adalah rangkaian dasar kuantum yang beroperasi di sejumlah kecil qubits. Mereka adalah blok bangunan dari kuantum sirkuit, seperti gerbang logik klasik sirkuit digital konvensional.
Tidak seperti logika klasik pintu gerbang pada umumnya, logika kuantum bersifat reversibel. Namun, komputasi klasik hanya dapat dilakukan dengan menggunakan gerbang reversibel. Sebagai contoh, gerbang Toffoli reversibel dapat melaksanakan semua fungsi Boolean. Gerbang ini memiliki penyetaraan kuantum secara langsung, menampilkan bahwa sirkuit kuantum dapat melakukan semua operasi yang dilakukan oleh sirkuit klasik.
Gerbang logik kuantum yang diwakili oleh kesatuan matriks. Gerbang kuantum yang paling umum beroperasi pada ruang dari satu atau dua qubits, seperti Gerbang logika klasik umum beroperasi pada satu atau dua bit. Ini berarti bahwa sebagai matriks, gerbang kuantum dapat dijelaskan oleh 2 × 2 atau 4 × 4 kesatuan matriks.

Algoritma Shor
Algoritma Shor merupakan sebuah metode yang dikembangkan tahun 1994 oleh ilmuwan AT&T  Peter Shor untuk menggunakan komputer kuantum yang futuristis untuk menemukan faktor-faktor dari sebuah bilangan. Bilangan-bilangan yang diperkalikan satu dengan yang lain  untuk  memperoleh  bilangan  asli.  Saat ini, pemfaktoran (factoring) sebuah bilangan besar masih terlalu sulit bagi komputer konvensional meskipun begitu mudah untuk  diverifikasi. Itulah sebabnya pemfaktoran bilangan besar ini banyak digunakan dalam metode kriptografi untuk melindungi data.





Parallel Computation


Parallelism Concept

Komputasi paralel adalah suatu bentuk komputasi dimana instruksi-instruksi dijalankan secara berkesinambungan. Masalah yang besar dapat dibagi menjadi beberapa masalah yang lebih kecil(submasalah), untuk kemudian diselesaikan secara serempak.
Jadi inti nya, komputasi parallel itu bisa banyak memproses dengan banyak komputer secara bersamaan dan diabagi menjadi beberapa bagian kecil untuk memecahkan masalah 

Pengantar Quantum Computation

Pendahuluan 
            Sebelum mengenal lebih jauh tentang Quantum Computation atau komputasi kuantum, saya akan menjelaskan definisinya terlebih dahulu.
Komputasi kuantum adalah bidang studi difokuskan pada teknologi komputer berkembang berdasarkan prinsip-prinsip teori kuantum , yang menjelaskan sifat dan perilaku energi dan materi pada kuantum (atom dan subatom) tingkat. Pengembangan komputer kuantum , jika praktis, akan menandai lompatan maju dalam kemampuan komputasi jauh lebih besar daripada yang dari sempoa ke modern superkomputer , dengan keuntungan kinerja di alam miliar kali lipat dan seterusnya.
Komputer kuantum, mengikuti hukum fisika kuantum, akan memperoleh kekuatan pengolahan yang besar melalui kemampuan untuk berada di beberapa negara, dan untuk melakukan tugas-tugas menggunakan semua kemungkinan permutasi secara bersamaa. Kini pusat penelitian di komputasi kuantum termasuk MIT, IBM, Oxford University, dan Los Alamos National Laboratory.

Entanglement
Entanglement merupakan keadaan dimana dua atom yang berbeda berhubungan sedemikian hingga satu atom mewarisi sifat atom pasangannya. “Entanglement adalah esensi komputasi kuantum karena ini adalah jalinan kualitas yang berhubungan dengan lebih banyak informasi dalam bit kuantum dibanding dengan bit komputing klasik,” demikian Andrew Berkley, salah satu peneliti.
Para ahli fisika dari University of Maryland telah satu langkah lebih dekat ke komputer kuantum dengan mendemonstrasikan eksistensi entanglement antara dua gurdi kuantum, masing-masing diciptakan dengan tipe sirkuit padat yang dikenal sebagai persimpangan Josephson. Temuan terbaru ini mendekatkan jalan menuju komputer kuantum dan mengindikasikan bahwa persimpangan Josephson pada akhirnya dapat digunakan untuk membangun komputer supercanggih.

Pengoperasian Data Qubit
Proses komputasi dilakukan pada partikel ukuran nano yang memiliki sifat mekanika quantum, maka satuan unit informasi pada Komputer Quantum disebut quantum bit, atau qubit. Berbeda dengan bit biasa, nilai sebuah qubit bisa 0, 1, atau superposisi dari keduanya. State dimana qubit diukur adalah sebagai vektor atau bilangan kompleks. Sesuai tradisi dengan quantum states lain, digunakan notasi bra-ket untuk merepresentasikannya.
Pure qubit state adalah superposisi liner dari kedua state tersebut. Lebih jelasnya, sebuah pure qubit state dapat direpresentasikan oleh kombinasi linear dari state|0> dan state |1> : Dengan α dan β adalah amplitudo probabilitas yan dapat berupa angka kompleks. State space dari sebuah qubit secara geometri dapat direpresentasikan Bloch sphere
Bloch sphere adalah ruang 2 dimensi yang merupakan geometri untuk permukaan bola. Dibandingkan bit konvensional yang hanya dapat beradai di salah satu kutub, Qubit dapat berada dimana saja dalam permukaan bola. Untuk penerapan fisiknya, semua sistem 2 level, selama ukurannya cukup kecil untuk hukum mekanika quantum berlaku. Berbagai jenis implementasi fisik telah dikemukakan, contohnya antara lain: polarisasi cahaya, spin elektron, muatan listrik, dll.
Superposisi quantum adalah inti perbedaan antara qubit dengan bit biasa. Dalam keadaan superposisi, sebuah qubit akan bernilai |0> dan |1> pada saat bersamaan. Menurut interpretasi Copenhagen, bila dilakukan pengukuran terhadap qubit, maka hanya akan muncul satu state saja. State lainnya “kolaps” dalam arti hancur dan tidak mungkin diambil kembali.
Pemanfaatan sifat superposisi qubit ini adalah Paralellisme Quantum. Paralelisme Quantum muncul dari kemampuan quantum register untuk menyimpan superposisi dari base state. Maka setiap operasi pada register berjalan pada semua kemungkinan dari superposisi secara simultan. Karena jumlah state yang mungkin adalah 2n, dengn n adalah jumlah qubit pada quantum register, kita dapat melakukan pada komputer quantum satu kali operasi yang membutuh kan waktu eksponensial pada komputer konvensional. Kelemahan dari metode ini adalah, semakin besar base state yang bersuperposisi, semakin kecil kemungkinan hasil pengukuran dari nilai hasil pengukuran tersebut benar. Kelemahan ini membuat pararellisme quantum tidak berguna bila operasi dilakukan pada nilai yang spesifik. Namun kelemahan ini tidak begitu berpengaruh pada fungsi yang memperhitungkan nilai dari semua input, bukan hanya satu. Sebagaimana ditunjukkan pada Algoritma Shor.

Quantum Gate
Dalam komputasi kuantum dan khusus kuantum sirkuit model komputasi, gerbang kuantum (atau Gerbang logika kuantum) adalah rangkaian dasar kuantum yang beroperasi di sejumlah kecil qubits. Mereka adalah blok bangunan dari kuantum sirkuit, seperti gerbang logik klasik sirkuit digital konvensional.
Tidak seperti logika klasik pintu gerbang pada umumnya, logika kuantum bersifat reversibel. Namun, komputasi klasik hanya dapat dilakukan dengan menggunakan gerbang reversibel. Sebagai contoh, gerbang Toffoli reversibel dapat melaksanakan semua fungsi Boolean. Gerbang ini memiliki penyetaraan kuantum secara langsung, menampilkan bahwa sirkuit kuantum dapat melakukan semua operasi yang dilakukan oleh sirkuit klasik.
Gerbang logik kuantum yang diwakili oleh kesatuan matriks. Gerbang kuantum yang paling umum beroperasi pada ruang dari satu atau dua qubits, seperti Gerbang logika klasik umum beroperasi pada satu atau dua bit. Ini berarti bahwa sebagai matriks, gerbang kuantum dapat dijelaskan oleh 2 × 2 atau 4 × 4 kesatuan matriks.

Algoritma Shor
Algoritma Shor merupakan sebuah metode yang dikembangkan tahun 1994 oleh ilmuwan AT&T  Peter Shor untuk menggunakan komputer kuantum yang futuristis untuk menemukan faktor-faktor dari sebuah bilangan. Bilangan-bilangan yang diperkalikan satu dengan yang lain  untuk  memperoleh  bilangan  asli.  Saat ini, pemfaktoran (factoring) sebuah bilangan besar masih terlalu sulit bagi komputer konvensional meskipun begitu mudah untuk  diverifikasi. Itulah sebabnya pemfaktoran bilangan besar ini banyak digunakan dalam metode kriptografi untuk melindungi data.





Parallel Computation


Parallelism Concept

Komputasi paralel adalah suatu bentuk komputasi dimana instruksi-instruksi dijalankan secara berkesinambungan. Masalah yang besar dapat dibagi menjadi beberapa masalah yang lebih kecil(submasalah), untuk kemudian diselesaikan secara serempak.
Jadi inti nya, komputasi parallel itu bisa banyak memproses dengan banyak komputer secara bersamaan dan diabagi menjadi beberapa bagian kecil untuk memecahkan masalah 

Selasa, 14 Mei 2013

Tentang Cloud Computing


      Cloud Computing jika diterjemahkan kedalam bahasa indonesia artinya adalah Komputer awan. Apa maksudnya? Baik disini akan kita bahas. semester lalu saya sempat mengikuti seminar tentang “Cloud Computing” yang diselenggaran oleh Biznet bertempat di Universitas Gunadarma. Dan dari sana lah  saya baru tahu dan mengerti tentang cloud computing. Jadi kesimpulan yang saya dapat adalah bahwa cloud computing merupakan sebuah teknologi dunia IT yang memanfaatkan internet untuk memenuhi kebutuhan user/perusahaan yang sekarang sedang dikembangkan. Jadi pada cloud computing ini semua dilakukan melalui internet, entah itu database, server, ataupun aplikasi. yang disimpan atau diletakan diinternet. Karena komputer-komputer tersebut terhubung melalui internet (awan) maka teknologi ini disebut “Cloud Computing”. 

        Teknologi cloud computing ini juga memiliki beberapa kelemahan, yaitu :
§  Kinerja komputer/user sangat bergantung pada kecepatan internet.
§  Jika server penyedia cloud computing down, maka kinerja user otomatis terganggu.
§  Keamanan, jelas sekali keamanan akan integritas data merupakan hal yang paling penting bagi seseorang (apalagi sebuah perusahaan) jadi karena minimnya keamanan yang mampu diberikan penyedia jasa cloud computing, membuat konsumen berpikir dua kali untuk memutuskan menggunakan teknologi Cloud Computing ini.
Contoh dari cloud computing adalah yahoo dan gmail, dan untuk indonesia adalah Biznet. Pada yahoo atau gmail, seseorang dapat mengirim dan menerima email tanpa harus menyimpannya pada memori komputernya. Namun email tersebut disimpan pada sebuah server yang jika kita ingin membukanya, kita hanya perlu akses internet. Contoh lainnya semisal kita memiliki perusahaan dengan banyak anak perusahaan. Jika kita ingin semua anak perusahaan mengupdate apa saja kebutuhannya, kita harus menghubungkan semua anak perusahan dalam sebuah jaringan dan dalam 1 database yang sama. Bagaimana caranya?kita harus menyewa jasa cloud computing berupa storage memori untuk menyimpan database tersebut di internet. Sehingga semua anak perusahaan dapat membuka database tersebut secara bersamaan.
Sekian dulu yaa pembahasan Cloud Computing dari saya, semoga bermanfaat..


Grid Computing
       sekarang mari kita bahas tentang Grid Computing,  Grid Computing atau Komputasi Grid merupakan salah satu dari tipe Komputasi Paralel, adalah penggunaan sumber daya yang melibatkan banyak komputer terpisah secara geografis namun tersambung via jalur komunikasi (termasuk Internet) untuk memecahkan persoalan komputasi skala besar. Semakin cepat jalur komunikasi terbuka, maka peluang untuk menggabungkan kinerja komputasi dari sumber-sumber komputasi yang terpisah menjadi semakin meningkat. Dengan demikian, skala komputasi terdistribusi dapat ditingkatkan secara geografis lebih jauh lagi, melintasi batas-batas domain administrasi yang ada.

sebagai sistem terdistribusi dengan non-interaktif bebaban kerja yang melibatkan sejumlah besar file. Apa yang membedakan grid computing dari konvensional sistem komputasi kinerja tinggi seperti komputasi cluster adalah grid lebih cenderung longgar digabungkan, heterogen, dan geografis.

Berdasarkan tulisan dari Ian Foster (Bapak Grid Computing), terdapat 3 hal yang mengidentifikasi bahwa suatu sistem termasuk di dalam komputasi grid, yaitu:
1.      Sistem tersebut berkoordinasi terhadap sumberdaya komputasi yang tidak berada dalam satu kendali terpusat. Misalnya komputer di Jakarta terhubung dengan komputer di Jayapura, Manado, dan Semarang.
2.      Sistem tersebut menggunakan protokol yang standar dan terbuka, tidak terpaut dengan suatu perusahaan atau produk tertentu. Standar tersebut dibutuhkan dibagian autentikasi, otorisasi, pencarian sumberdaya yang tersedia, dan pengaksesan sumberdaya.
3.      Sistem tersebut bersifat non-trivial (tidak biasa-biasa saja) untuk mencapai kualitas layanan yang canggih.

Pertanyaannya: permasalahan besar seperti apa yang menyebabkan digunakannya komputasi grid? Jawabannya banyak sekali. Komputasi grid ini seringkali digunakan untuk riset yang membutuhkan kemampuan super komputer, misalnya adalah riset iklim, riset untuk menemukan obat, dan sebagainya. Bahkan komputasi grid ini juga digunakan di bidang kesenian.
Lalu mengapa harus menggunakan komputasi grid? bukankah terdapat super komputer yang memiliki kemampuan super power dalam mengolah data? Ya, tetapi harga super komputer itu mahal dan dirasa masih kurang untuk memenuhi kebutuhan dalam riset atau penelitian.
Mari sama-sama kita bayangkan, bahwa terdapat banyak komputer yang tersebar di seluruh permukaan bumi dan komputer-komputer tersebut bekerja sama untuk menyelesaikan suatu permasalahan.

Open Panel

Blogroll